$b^{2}-4 a c$

Education MATTERS GROUP

MATHEMATICS TIPS \& HINTS SHEETS NUMBER \&GEOMETR Y

Education Matters Tips

EDUCATION MATTERS GROUP
9 BELGRAVE RD, VICTORIA, LONDON, SWIV 1QB WWW.EDUCATIONMATTERSGROUP.CO.UK
02030313550

EDUCATION MATTERS GROUP INVESTING IN YOUR FUTURE

EDUCATION MATTERS GROUP

MATHEMATICS TIPS\& HINTS

 SHEETSWe hope this will give you some valuable hints and tips to help in teaching Mathematics concepts in a positive way.

Whilst these are some guidelines, it is important that you follow what has been set out by the school.

The tips have these topics covered-

- Place Value- Tools that could be used
- Order of operations- Associative,

Communtative and Distributive Laws

- Number- Operations and Calculate
- Fractions, Decimals and Percentages
- Ratios
- Geometry- 2D and 3D shapes and their properties
-Calculating areas
-Types of lines
- Statistics\& probability

We would suggest that especially with number, students move from using concrete items to using pictorial representations to written abstract methods to consolidate their learning and understanding of concepts taught.

Mathematics NUMBER

Educatíon MATTERS GROUP

PlaceValue

Concrete Pictorial

 Abstract processUsing this process builds upon learning. Students do and see, then draw and see and then be able to write it using a written method.

Place Value

Tools that could be used- Hundreds grid, Place Value Board, Beads, Number fans, Playing cards, number jigsaw, dice, number beads, place value arrows, counters, dienes
Place Value
Tools that could be used- Hundreds grid,
Place Value Board, Beads, Number fans,
Playing cards, number jigsaw, dice,
number beads, place value arrows,
counters, dienes

Followingthe C-P-A-can the studentshow the relationship with the numbersystem using manipulatives first,through pictures or drawings nextand then through a written system?

Mathematics

Educatíon MATTERS GROUP

Order of operations

How Do I Remember It All...? BODMAS! B- Brackets first
O- Orders(i.e. Powers and Square Roots, etc.) DM- Division and Multiplication(left-to-right) AS- Addition and Subtraction(left-to-right)

Order of Operations
Do things in Brackets First

$$
\begin{aligned}
& \text { V } 6 \times(5+3)=6 \times 8=\mathbf{4 8} \\
& \text { X } 6 \times(5+3)=\frac{30}{3}+=33 \text { (wrong) }
\end{aligned}
$$

Exponents (Powers, Roots) before Multiply, Divide, Add or Subtract

$$
\begin{aligned}
& \text { 久 } 5 \times 2^{2}=5 \times 4=20 \\
& \boldsymbol{X} \quad 5 \times 2^{2}=10^{2}=100 \text { (wrong) }
\end{aligned}
$$

Multiply or Divide before you Add or Subtract

Followingthe C-P-A-can the studentshow the relationship with the numbersystem using manipulatives first,through pictures or drawings nextand then through a written system ?
Alsousing the tools from the firstpage ,think of ways you can combine the concreteexamples firstto then getto some of the pictorial versions above

Youcould use -place value grid ,dienes ,place value counters , number lines andthen progress to using pictures to explain their understanding

ASSOCIATIVE PROPERTY
$(a+b)=c=a-(b+c)$ or $(a \times b) \times c=a \times(b \times c)$ iro af about prouping.
To asooliste with people is 50 group up with them.

Siff titititit if

DISTRIBUTIVE PROPERTY
$a+(b+c)=a b, a c$
To dethitule something mears to give illo everyone. The Distributive Property gives wfotever is outaide the

MULTIPLICATION EXAMPLES:

\exists M Mathematics - \mathcal{C} Calculate

Open Number Line Strategies

make jumps of ten, then jumps of 1

hundreds	tens	units	
	*"	$\begin{array}{r} 8 \\ \operatorname{men} \\ \operatorname{men} \end{array}$	$\begin{array}{r} 39 \\ +\quad 27 \end{array}$
			6
			1

Mutit: Vait MUTiP ICATION

Multiplication Definition:

A mathematical operation performed on 2 or more numbers to find the PRODUCT. Also known as repeated addition.

Grid Method

Since we are multiplying 2 digit by 2 digit, we
need to make a 2 by 2 box.

1200

420
100

$$
\begin{aligned}
& 27 \text { is }=20+7 \\
& 65 \text { is }=60+5 \\
& \text { Multiply } 60 \times 20 \text {, then } \\
& 60 \times 7 \text {, then } 20 \times 5 \text {, } \\
& \text { then } 5 \times 7 \text {. } \\
& \text { After you have found } \\
& \text { the partial products } \\
& \text { add them all together. }
\end{aligned}
$$

Column method

$\frac{1.55}{1.55}$ Answer: 1,755

EDUCATION MATTERS GROUP
INVESTING IN YOUR FUTURE

ENf
 Mathematics
 Fractions,Decimals andPercentages

$\underset{\text { MATTERS GROUP }}{\text { Educatín }}$

Fraction	Percent	Decimal
1	100%	1.0
$1 / 2$	50%	0.5
$1 / 3$	33.3%	0.33
$1 / 4$	25%	0.25
$1 / 5$	20%	0.2
$1 / 6$	16.6%	0.166
$1 / 8$	12.5%	0.125
$1 / 10$	10%	0.1
$1 / 12$	8.3%	0.083

Changing Fraction, Decimals and Percentages Examples		
Decimal	Percentage	Fraction
$0.23 \int^{23 \%} \int^{\frac{23}{100 \text { cannot } \text { simplify! }}}$		
$\times 100$ out of 100		
$0.05 \int^{5 \%} \int^{100} \longrightarrow_{20}^{\text {simplify! }}$		
$\times 100$ out of 100		

Division of Fractions
Step 1

$\left.\frac{2}{3} \div \frac{3}{7}\right)$
$\frac{2}{3} \times\left(\frac{7}{3}=2\right.$

Step 2

$\frac{2}{3} \times \frac{7}{3} \rightarrow \frac{2 \times 7}{3 \times 3}$
$=$

Step 3
$\frac{14}{9} \rightarrow \frac{9}{14}$
$\frac{9}{5}$
you can
compare the fractions by comparing the products in the anternae
areate an equvalent fraction for each origind fraction using the new numerators and common denominator add or subtract the fractions using the equivalent fractions
multbly the digts n the denorminators (oOHom) to find a cormon denominator

EN Mathematics Calculate-Ratios

 FducationMATters GRoup

ratio

A ratio shows the relative sizes of two or more like values.
A ratio may compare a selected number of parts to other parts in the whole, or compare the selected number of parts to the total number of all parts in the whole.

part-part

or
part-whole
4:6 part-part

$\frac{4}{10}$ part-whole

These relative values in a ratio are often called part-part or part-whole.

A ratio can be written as:

four to six, 4 to $6,4: 6$ or $\frac{4}{6}$
The numbers in a ratio are called terms. A ratio may have more than two terms, e.g. 4:5:3:1

simplifying a ratio

Simplifying a ratio means reducing its terms to the lowest possible numbers by dividing the terms by the same number.
$800: 100080: 100 \quad 16: 20 \quad 8: 10 \quad 4: 5$

We can use a series of small numbers, or, use the largest number possible by finding the highest common factor (HCF or GCF) to divide each term.

Determining Ratios

A Ratio is a comparison or a relationship between two items.

The Ratio of Blue Circles to Pink Circles is five blue circles compared to three pink circles.

We can write this in any three of the following ways:
Blue to Pink $=5$ to 3 or $5: 3$ or $5 / 3$

Equivalent Ratios

If we double our circles we now have 10 Blue circles to 6 Pink circles. There are still 5 Blue Circles for every three Pink circles. We simply now have two of these groupings.

This means the simplest Ratio we can write for our situation is Blue to Pink $=5: 3$.

The Ratios $10: 6$ and $5: 3$ are said to be "Equivalent".

Ordering of Ratios

We can express our Ratio comparison in two ways :
Blue Circles to Pink Circles or Pink Circles to Blue Circles

```
Blue to Pink=5 to 3 or 5:3 or 5/3
```

Pink to Blue $=3$ to 5 or $3: 5$ or $3 / 5$

$\exists 1$ Mathematics Geometry

SQUARE	
$P=4 s$	S
$A=s^{2}$	

TRIANGLE

PYTHAGOREAN THEOREM

RECTANGLE

PARALLELOGRAM

CIRCULAR RING
$A=\pi\left(R^{2}-r^{2}\right)$

A square is a four sided regular polygon.; The rectangle is a 4 sided polygon, quadrilateral, with right angle
corners.; The circle is a shape where all points along the shape are equal distance from a specific point. This point is the center of the circle and the distance to the center of the circle is the radius.; The triangle is a 3 sided polygon. Triangles can be classified by their sides:Equilateral triangles: All sides are equal in length., Isosceles triangles: Two sides are equal in length., Scalene triangles: All sides have different lengths., Triangles can also be classified by their angles: Right triangle: One angle is 90 degrees., Oblique triangle: Has no angle equal to 90 degrees., Obtuse triangle: One angle is greater than 90 degrees., Acute triangle: All angles are less than 90 degrees.; A parallelogram is a 4 sided polygon or quadrilateral with two sets of parallel sides. The opposite sides are equal in length;:A trapezoid is a 4 sided polygon or quadrilateral with one set of parallel sides.

- Circumference
$=\pi \times$ Diameter
$=3.14 \times 20$

3D shapes
Area and volume
CUBE
CYIINDER

$A=2 \pi r(r+h)$
$V=\pi r^{2} h$

RECTANGULAR BOX

Distance $=$ Speed \times Time

Time $=\frac{\text { Distance }}{\text { Speed }}$
Speed $=\frac{\text { Distance }}{\text { Time }}$

The triangles will help you remember these 3 rules:

```
Distance = Speed }\times\mathrm{ Time
Time = Distance/Speed
Speed= Distance/Time
```


En

 Additionaltips

 Additionaltips}

Joining Problems

Add all the numbers then divide by the amount of numbers

$$
9,3,1,8,3,6
$$

$$
9+3+1+8+3+6=30
$$

$$
30 \div 6=5
$$

The mean is 5

Median

Order the set of numbers, the median is the middle number
$9,3,1,8,3,6$
$1,3,3,6,8,9$
The median is 4.5

Mode

The most common number
$9,3,1,8,3,6$
The mode is 3

Range

The difference between the highest number and lowest number
$9,3,1,8,3,6$
$9-1=8$

The range is. 8

JOINING PROBLEMS			
Join (Result Unknown) $6+3=$	Join (Change Unknown)$4+\ldots=7$		Join (Start Unknown) $-+4=6$
Mr. Smith had 6 cookies. Suzy gave him 3 more cookies. How many cookies does Mr. Smith have now?	Mr. Smith had 4 cookies. Suzy gave him some more. Then, Mr. Smith had 7 cookies. How many cookies did Suzy give Mr. Smith?		Mr. Smith had some cookies. Suzy gave him 4 more cookies. Then, he had 6 cookies. How many cookies did Mr. Smith start with?
SEPARATING PROBLEMS			
Separate (Result Unknown) $7-4=$	Separate (Change Unknown)$5-\ldots=1$		Separate (Start Unknown) $--4=4$
Mr. Smith had 7 cookies. He gave 4 of them to Suzy. How many cookies did Mr . Smith have left?	Mr. Smith had 5 cookies. He gave some to Suzy. Then, he had 1 cookie left. How many cookies did Mr. Smith give to Suzy?		Mr. Smith had some cookies. He gave 4 to Suzy. Then, he had 4 cookies left. How many cookies did Mr. Smith have to start with?
PART - PART - WHOLE PROBLEMS			
Part - Part - Whole (Whole Unknown)$6+3=$		Part - Part - Whole (Part Unknown) $7-4=$ \qquad or $4+\ldots=7$	
Mr. Smith had 6 white cookies and 3 pink cookies. How many cookies did Mr. Smith have altogether?		Mr. Smith had 7 cookies. 4 were pink and the rest were white. How many white cookies did Mr. Smith have?	
COMPARING PROBLEMS			
Compare (Difference Unknown) $5-3=$ \qquad or $3+_{-}=5$	Quantity $3+2$	pare Unknown) $2=$	Compare (Referent Unknown) $8-5=$ \qquad
Mr. Smith had 5 cookies. Suzy had 3 cookies. How many more cookies did Mr. Smith have than Suzy?	Mr. Smith had 3 more cookies th many cookies	cookies. Suzy had 2 an Mr. Smith. How did Suzy have?	Mr. Smith had 8 cookies. He had 5 more than Suzy. How many cookies did Suzy have?

The 9 Problem Solving Strategies

1. Look for the important words in the question Write them down.
Underline them.
Make sure I know what to do. Look for a pattern
Can I see something happening over and over again? Will this help me solve the problem?

3 Have a go Try an answer: Does the answer make sense?

Try an easier problem Can I change the numbers in the question to make it simpler? Will this make finding the answer easier?
(5) Use a drawing Can I draw something about the problem? Will this help me to find the answer?
(8) Make a model

Can I use paper or blocks to help me find the answer? Can I use people to help me find the answer?

6 Work backwards
Can I start at the end of the question to help work it out? Will my answer work?

Think logically

Can I tell something about the answer straight away? Can I get rid of answers that are not correct?

Problem Solving Model

- Read the problem 2, maybe 3 times. Highlight or underline important information.
- Talk it! - talk about the problem to understand it better.

CARRY OUT THE PLAN

- Apply your strategy.
- You may need to revise and try a different strategy..
- Show your work (thinking).
- Ask yourself...

Is your answer reasonable?
Does it make sense?

- What strategy will you use and why?
- Talk it! - discuss strategies with a partner.
- What manipulatives will you use?
- Answer the question!
- Tell, show, write, ... how the answer was reached. Consider extensions.
- First I... I noticed that... Then
I... I thought... Finally...

